Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo.

نویسندگان

  • Robert S Lee-Young
  • Julio E Ayala
  • Charles F Hunley
  • Freyja D James
  • Deanna P Bracy
  • Li Kang
  • David H Wasserman
چکیده

Endothelial nitric oxide synthase (eNOS) is associated with a number of physiological functions involved in the regulation of metabolism; however, the functional role of eNOS is poorly understood. We tested the hypothesis that eNOS is critical to muscle cell signaling and fuel usage during exercise in vivo, using 16-wk-old catheterized (carotid artery and jugular vein) C57BL/6J mice with wild-type (WT), partial (+/-), or no expression (-/-) of eNOS. Quantitative reductions in eNOS expression ( approximately 40%) elicited many of the phenotypic effects observed in enos(-/-) mice under fasted, sedentary conditions, with expression of oxidative phosphorylation complexes I to V and ATP levels being decreased, and total NOS activity and Ca(2+)/CaM kinase II Thr(286) phosphorylation being increased in skeletal muscle. Despite these alterations, exercise tolerance was markedly impaired in enos(-/-) mice during an acute 30-min bout of exercise. An eNOS-dependent effect was observed with regard to AMP-activated protein kinase signaling and muscle perfusion. Muscle glucose and long-chain fatty acid uptake, and hepatic and skeletal muscle glycogenolysis during the exercise bout was markedly accelerated in enos(-/-) mice compared with enos(+/-) and WT mice. Correspondingly, enos(-/-) mice exhibited hypoglycemia during exercise. Thus, the ablation of eNOS alters a number of physiological processes that result in impaired exercise capacity in vivo. The finding that a partial reduction in eNOS expression is sufficient to induce many of the changes associated with ablation of eNOS has implications for chronic metabolic diseases, such as obesity and insulin resistance, which are associated with reduced eNOS expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide

Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitri...

متن کامل

No-dependent signaling pathways in unloaded skeletal muscle

The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) acti...

متن کامل

Metabolic control of muscle blood flow during exercise in humans.

During muscle contraction, several mechanisms regulate blood flow to ensure a close coupling between muscle oxygen delivery and metabolic demand. No single factor has been identified to constitute the primary metabolic regulator, yet there are signal transduction pathways between skeletal muscle and the vasculature that induce vasodilation. A link between muscle metabolic events and microvascul...

متن کامل

Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains

Dystrophin-glycoprotein complex (DGC) is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin) of a muscle fiber to the extracellular matrix (ECM). Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies), and limb-girdle muscular dystrophies (sarcoglycanopathies), are ...

متن کامل

Skeletal muscle glucose uptake during treadmill exercise in neuronal nitric oxide synthase-μ knockout mice.

Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically cathete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 298 5  شماره 

صفحات  -

تاریخ انتشار 2010